Mila
Deep Neural Network Library
Loading...
Searching...
No Matches
Mila::Dnn::Compute::CpuLayerNormOp Class Referenceexport

CPU implementation of the Layer Normalization operation for neural networks. More...

Inheritance diagram for Mila::Dnn::Compute::CpuLayerNormOp:
Collaboration diagram for Mila::Dnn::Compute::CpuLayerNormOp:

Public Types

using MR = typename CpuDevice::MR
 
using OperationBase = UnaryOperation< DeviceType::Cpu, float >
 
- Public Types inherited from Mila::Dnn::Compute::UnaryOperation< DeviceType::Cpu, float >
using MR = std::conditional_t< TDeviceType==DeviceType::Cuda, CudaMemoryResource, HostMemoryResource >
 Memory resource type based on device type.
 

Public Member Functions

 CpuLayerNormOp (const LayerNormConfig &config)
 Constructs a new CPU Layer Normalization operation with the default device context.
 
 CpuLayerNormOp (std::shared_ptr< DeviceContext > context, const LayerNormConfig &config)
 Constructs a new CPU Layer Normalization operation with a specific device context.
 
void backward (float *dinp, float *dweight, float *dbias, float *dout, float *inp, float *weight, float *mean, float *rstd, int B, int T, int C)
 Performs the backward pass of the Layer Normalization operation.
 
void forward (const Tensor< float, MR > &input, const std::vector< std::shared_ptr< Tensor< float, MR > > > &parameters, const OperationAttributes &attributes, Tensor< float, MR > &output, std::vector< std::shared_ptr< Tensor< float, MR > > > &output_state) const override
 Performs the forward pass of the Layer Normalization operation.
 
std::string getName () const override
 Gets the name of this operation.
 
- Public Member Functions inherited from Mila::Dnn::Compute::UnaryOperation< DeviceType::Cpu, float >
 UnaryOperation (OperationType operation_type)
 Constructs a UnaryOperation with the specified operation type.
 
 UnaryOperation (OperationType operation_type, std::shared_ptr< DeviceContext > context)
 Constructs a UnaryOperation with the specified operation type and device context.
 
virtual ~UnaryOperation ()=default
 Virtual destructor for proper cleanup of derived classes.
 
virtual void backward (const Tensor< float, MR > &grad, const std::vector< std::shared_ptr< Tensor< float, MR > > > &parameters, std::vector< std::shared_ptr< Tensor< float, MR > > > &output_grads) const
 Executes the backward pass of a unary operation.
 
virtual void backward (const Tensor< float, MR > &input, const Tensor< float, MR > &output_grad, const std::vector< std::shared_ptr< Tensor< float, MR > > > &parameters, std::vector< std::shared_ptr< Tensor< float, MR > > > &parameter_grads, Tensor< float, MR > &input_grad, const OperationAttributes &properties, const std::vector< std::shared_ptr< Tensor< float, MR > > > &output_state) const
 Executes the comprehensive backward pass of a unary operation.
 
virtual void forward (const Tensor< float, MR > &input, const std::vector< std::shared_ptr< Tensor< float, MR > > > &parameters, const OperationAttributes &properties, Tensor< float, MR > &output, std::vector< std::shared_ptr< Tensor< float, MR > > > &output_state) const=0
 Executes the forward pass of a unary operation.
 
- Public Member Functions inherited from Mila::Dnn::Compute::OperationBase< TDeviceType, TInput1, TInput2, TOutput >
 OperationBase (OperationType operation_type, std::shared_ptr< DeviceContext > context)
 Constructs an OperationBase object with a specific device context and compute precision.
 
virtual ~OperationBase ()=default
 Virtual destructor for the OperationBase class.
 
std::shared_ptr< DeviceContextgetDeviceContext () const
 Gets the device context associated with this operation.
 
DeviceType getDeviceType () const
 Gets the device type for this operation.
 
OperationType getOperationType () const
 Gets the operation type enumeration value.
 

Private Attributes

LayerNormConfig config_
 Configuration for the LayerNorm operation.
 

Detailed Description

CPU implementation of the Layer Normalization operation for neural networks.

This class provides a CPU-based implementation of the Layer Normalization operation, which normalizes inputs across the features dimension for each sample in a batch. Layer normalization helps stabilize training by reducing internal covariate shift and is commonly used in transformer architectures and other deep neural networks.

The operation normalizes each input vector independently, unlike batch normalization which normalizes across the batch dimension.

CPU operations always use full precision regardless of policy settings.

Template Parameters
TInputThe data type of the input tensor elements.
TDataTypeThe data type used for computation and output (defaults to the input type).

Member Typedef Documentation

◆ MR

◆ OperationBase

Constructor & Destructor Documentation

◆ CpuLayerNormOp() [1/2]

Mila::Dnn::Compute::CpuLayerNormOp::CpuLayerNormOp ( const LayerNormConfig config)
inline

Constructs a new CPU Layer Normalization operation with the default device context.

CPU operations always use full precision regardless of policy settings.

Parameters
precision_policyIgnored for CPU operations, as they always use full precision.

◆ CpuLayerNormOp() [2/2]

Mila::Dnn::Compute::CpuLayerNormOp::CpuLayerNormOp ( std::shared_ptr< DeviceContext context,
const LayerNormConfig config 
)
inline

Constructs a new CPU Layer Normalization operation with a specific device context.

CPU operations always use full precision regardless of policy settings.

Parameters
contextThe device context to use for this operation.
precision_policyIgnored for CPU operations, as they always use full precision.
Exceptions
std::runtime_errorIf the context is not for a CPU device.

Member Function Documentation

◆ backward()

void Mila::Dnn::Compute::CpuLayerNormOp::backward ( float *  dinp,
float *  dweight,
float *  dbias,
float *  dout,
float *  inp,
float *  weight,
float *  mean,
float *  rstd,
int  B,
int  T,
int  C 
)
inline

Performs the backward pass of the Layer Normalization operation.

Computes gradients with respect to inputs, weights, and biases based on the output gradient and the forward pass results.

Parameters
dinpPointer to the gradient buffer for input.
dweightPointer to the gradient buffer for weight parameters.
dbiasPointer to the gradient buffer for bias parameters.
doutPointer to the gradient buffer from the output.
inpPointer to the original input values.
weightPointer to the weight parameters.
meanPointer to the mean values computed during forward pass.
rstdPointer to the reciprocal standard deviation values computed during forward pass.
BBatch size.
TDataTypeSequence length.
CNumber of features/channels.
Here is the call graph for this function:

◆ forward()

void Mila::Dnn::Compute::CpuLayerNormOp::forward ( const Tensor< float, MR > &  input,
const std::vector< std::shared_ptr< Tensor< float, MR > > > &  parameters,
const OperationAttributes attributes,
Tensor< float, MR > &  output,
std::vector< std::shared_ptr< Tensor< float, MR > > > &  output_state 
) const
inlineoverride

Performs the forward pass of the Layer Normalization operation.

Normalizes each input vector across the feature dimension, then applies a learnable scaling factor and bias.

Parameters
inputInput tensor of shape [B, TDataType, C] where B is batch size, TDataType is sequence length, and C is feature dimension.
parametersVector of parameter tensors [weight, bias] where weight and bias are of shape [C].
attributesAdditional attributes for the operation.
outputOutput tensor of the same shape as input, containing the normalized values.
output_stateCache for intermediate results [mean, rstd] used in the backward pass.
Here is the call graph for this function:

◆ getName()

std::string Mila::Dnn::Compute::CpuLayerNormOp::getName ( ) const
inlineoverridevirtual

Gets the name of this operation.

Returns
std::string The name of the operation ("Cpu::LayerNormOp").

Implements Mila::Dnn::Compute::OperationBase< TDeviceType, TInput1, TInput2, TOutput >.

Member Data Documentation

◆ config_

LayerNormConfig Mila::Dnn::Compute::CpuLayerNormOp::config_
private

Configuration for the LayerNorm operation.


The documentation for this class was generated from the following file: