backward() | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inlinevirtual |
build() | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
calculateLoss(const Tensor< TOutput, TMR > &targets) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
captureGraphBegin() | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
captureGraphEnd() | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
config_ | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | private |
createContext(const std::string &device_name) | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inlineprivatestatic |
cuda_graph_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | private |
cuda_graph_exec_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | private |
device_context_ | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | private |
evaluate(TDataLoader &data_loader, bool verbose=false) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
executeGraph() | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
forward(const Tensor< TInput, MR > &inputs, const Tensor< TOutput, MR > &targets) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
getDevice() const | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
getDeviceContext() const | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inline |
getDeviceType() const | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inline |
getName() const | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inline |
getParameterTensors() const | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inline |
getPrecision() const | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inline |
getStateTensors() const | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inline |
getStream() const | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
graph_capture_active_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | private |
graph_initialized_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | private |
initializeDevice() | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inlineprivate |
is_built_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | private |
is_training_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | private |
isTraining() const | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inline |
last_inputs_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | protected |
last_targets_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | protected |
load(ModelArchive &archive)=0 | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | pure virtual |
loadCheckpoint(const std::string &filename) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
Model() | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
Model(std::shared_ptr< DeviceContext > context) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
Model(const std::string &device_name) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
Module(const std::string &device_name, const ComponentConfig &config) | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inlineexplicit |
Module(std::shared_ptr< DeviceContext > context, const ComponentConfig &config) | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inlineexplicit |
ModuleBase typedef | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | |
MR typedef | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | |
old_device_type_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | private |
parameter_map_ | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | protected |
parameterCount() const =0 | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | pure virtual |
parameters() const | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
parametersToString() const | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inlineprotected |
predict(const Tensor< TInput, TMR > &inputs) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
print() const | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
save(ModelArchive &archive) const =0 | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | pure virtual |
saveCheckpoint(const std::string &filename) const | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
setDevice(const std::string &device_name) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
setDevice(int device_id) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
setTraining(bool is_training) | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inlinevirtual |
setTrainingMode(bool training) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
state_map_ | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | protected |
stateToString() const | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | inlineprotected |
stream_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | private |
stream_created_ | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | private |
toString() const =0 | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | pure virtual |
train(TDataLoader &train_loader, TDataLoader *val_loader=nullptr, const TrainingConfig &config={}, const std::vector< ModelCallback< TInput, TOutput > * > &callbacks={}) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
training_mode_ | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | private |
updateParameters(float learning_rate, float beta1=0.9f, float beta2=0.999f, float epsilon=1e-8f, float weight_decay=0.0f, size_t step=1) | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inlinevirtual |
zeroGrads() | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inlinevirtual |
~Model() | Mila::Dnn::Model< TDeviceType, TInput, TOutput > | inline |
~Module()=default | Mila::Dnn::Module< TDeviceType, TInput, TOutput > | virtual |