Mila
Deep Neural Network Library
Loading...
Searching...
No Matches
Mila::Dnn::Model< TDeviceType, TInput, TOutput > Member List

This is the complete list of members for Mila::Dnn::Model< TDeviceType, TInput, TOutput >, including all inherited members.

backward()Mila::Dnn::Model< TDeviceType, TInput, TOutput >inlinevirtual
build()Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
calculateLoss(const Tensor< TOutput, TMR > &targets)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
captureGraphBegin()Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
captureGraphEnd()Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
config_Mila::Dnn::Module< TDeviceType, TInput, TOutput >private
createContext(const std::string &device_name)Mila::Dnn::Module< TDeviceType, TInput, TOutput >inlineprivatestatic
cuda_graph_Mila::Dnn::Model< TDeviceType, TInput, TOutput >private
cuda_graph_exec_Mila::Dnn::Model< TDeviceType, TInput, TOutput >private
device_context_Mila::Dnn::Module< TDeviceType, TInput, TOutput >private
evaluate(TDataLoader &data_loader, bool verbose=false)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
executeGraph()Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
forward(const Tensor< TInput, MR > &inputs, const Tensor< TOutput, MR > &targets)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
getDevice() constMila::Dnn::Model< TDeviceType, TInput, TOutput >inline
getDeviceContext() constMila::Dnn::Module< TDeviceType, TInput, TOutput >inline
getDeviceType() constMila::Dnn::Module< TDeviceType, TInput, TOutput >inline
getName() constMila::Dnn::Module< TDeviceType, TInput, TOutput >inline
getParameterTensors() constMila::Dnn::Module< TDeviceType, TInput, TOutput >inline
getPrecision() constMila::Dnn::Module< TDeviceType, TInput, TOutput >inline
getStateTensors() constMila::Dnn::Module< TDeviceType, TInput, TOutput >inline
getStream() constMila::Dnn::Model< TDeviceType, TInput, TOutput >inline
graph_capture_active_Mila::Dnn::Model< TDeviceType, TInput, TOutput >private
graph_initialized_Mila::Dnn::Model< TDeviceType, TInput, TOutput >private
initializeDevice()Mila::Dnn::Model< TDeviceType, TInput, TOutput >inlineprivate
is_built_Mila::Dnn::Model< TDeviceType, TInput, TOutput >private
is_training_Mila::Dnn::Model< TDeviceType, TInput, TOutput >private
isTraining() constMila::Dnn::Module< TDeviceType, TInput, TOutput >inline
last_inputs_Mila::Dnn::Model< TDeviceType, TInput, TOutput >protected
last_targets_Mila::Dnn::Model< TDeviceType, TInput, TOutput >protected
load(ModelArchive &archive)=0Mila::Dnn::Module< TDeviceType, TInput, TOutput >pure virtual
loadCheckpoint(const std::string &filename)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
Model()Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
Model(std::shared_ptr< DeviceContext > context)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
Model(const std::string &device_name)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
Module(const std::string &device_name, const ComponentConfig &config)Mila::Dnn::Module< TDeviceType, TInput, TOutput >inlineexplicit
Module(std::shared_ptr< DeviceContext > context, const ComponentConfig &config)Mila::Dnn::Module< TDeviceType, TInput, TOutput >inlineexplicit
ModuleBase typedefMila::Dnn::Model< TDeviceType, TInput, TOutput >
MR typedefMila::Dnn::Model< TDeviceType, TInput, TOutput >
old_device_type_Mila::Dnn::Model< TDeviceType, TInput, TOutput >private
parameter_map_Mila::Dnn::Module< TDeviceType, TInput, TOutput >protected
parameterCount() const =0Mila::Dnn::Module< TDeviceType, TInput, TOutput >pure virtual
parameters() constMila::Dnn::Model< TDeviceType, TInput, TOutput >inline
parametersToString() constMila::Dnn::Module< TDeviceType, TInput, TOutput >inlineprotected
predict(const Tensor< TInput, TMR > &inputs)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
print() constMila::Dnn::Model< TDeviceType, TInput, TOutput >inline
save(ModelArchive &archive) const =0Mila::Dnn::Module< TDeviceType, TInput, TOutput >pure virtual
saveCheckpoint(const std::string &filename) constMila::Dnn::Model< TDeviceType, TInput, TOutput >inline
setDevice(const std::string &device_name)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
setDevice(int device_id)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
setTraining(bool is_training)Mila::Dnn::Module< TDeviceType, TInput, TOutput >inlinevirtual
setTrainingMode(bool training)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
state_map_Mila::Dnn::Module< TDeviceType, TInput, TOutput >protected
stateToString() constMila::Dnn::Module< TDeviceType, TInput, TOutput >inlineprotected
stream_Mila::Dnn::Model< TDeviceType, TInput, TOutput >private
stream_created_Mila::Dnn::Model< TDeviceType, TInput, TOutput >private
toString() const =0Mila::Dnn::Module< TDeviceType, TInput, TOutput >pure virtual
train(TDataLoader &train_loader, TDataLoader *val_loader=nullptr, const TrainingConfig &config={}, const std::vector< ModelCallback< TInput, TOutput > * > &callbacks={})Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
training_mode_Mila::Dnn::Module< TDeviceType, TInput, TOutput >private
updateParameters(float learning_rate, float beta1=0.9f, float beta2=0.999f, float epsilon=1e-8f, float weight_decay=0.0f, size_t step=1)Mila::Dnn::Model< TDeviceType, TInput, TOutput >inlinevirtual
zeroGrads()Mila::Dnn::Model< TDeviceType, TInput, TOutput >inlinevirtual
~Model()Mila::Dnn::Model< TDeviceType, TInput, TOutput >inline
~Module()=defaultMila::Dnn::Module< TDeviceType, TInput, TOutput >virtual