Mila
Deep Neural Network Library
Loading...
Searching...
No Matches
Mila::Dnn::Compute::Detail Namespace Reference

Namespace for CUDA layer normalization implementation details. More...

Classes

struct  cuda_encoder_impl
 Primary template for precision-specific CUDA encoder implementations. More...
 
struct  cuda_encoder_impl< float >
 Single-precision (float) specialization for CUDA encoder operations. More...
 
struct  cuda_encoder_impl< half >
 Half-precision (half) specialization for CUDA encoder operations. More...
 
struct  cuda_gelu_impl
 
struct  cuda_gelu_impl< float >
 
struct  cuda_gelu_impl< half >
 
struct  cuda_layernorm_impl
 
struct  cuda_layernorm_impl< float >
 
struct  cuda_layernorm_impl< half >
 
struct  cuda_matmul_impl
 
struct  cuda_matmul_impl< float >
 
struct  cuda_matmul_impl< half >
 
struct  cuda_mha_impl
 Implementation details for CUDA-based Multi-Head Attention operations. More...
 
struct  cuda_mha_impl< float >
 
struct  cuda_mha_impl< half >
 
struct  cuda_residual_impl
 
struct  cuda_residual_impl< float >
 
struct  cuda_residual_impl< half >
 
struct  cuda_softmax_crossentropy_impl
 
struct  cuda_softmax_crossentropy_impl< float >
 
struct  cuda_softmax_crossentropy_impl< half >
 
struct  cuda_softmax_impl
 
struct  cuda_softmax_impl< float >
 
struct  cuda_softmax_impl< half >
 

Typedefs

using BackwardFp16Func = void(*)(half *, const half *, const half *, int, cudaStream_t)
 
using BackwardFp32Func = void(*)(float *, const float *, const float *, int, cudaStream_t)
 
using ForwardFp16Func = void(*)(half *, const half *, int, cudaStream_t)
 
using ForwardFp32Func = void(*)(float *, const float *, int, cudaStream_t)
 

Detailed Description

Namespace for CUDA layer normalization implementation details.

Namespace for CUDA fused softmax cross entropy implementation details.

Namespace for CUDA softmax implementation details.

Namespace for CUDA residual implementation details.

Namespace for CUDA matrix multiplication implementation details.

This namespace contains the implementation details for the CUDA layer normalization operation, including specialized templates for different data types (float, half).

This namespace contains the implementation details for the CUDA matrix multiplication operation, including specialized templates for different data types (float, half).

This namespace contains the implementation details for the CUDA residual operation, including specialized templates for different data types (float, half).

This namespace contains the implementation details for the CUDA softmax operation, including specialized templates for different data types (float, half).

This namespace contains the implementation details for the CUDA fused softmax cross entropy operation, including specialized templates for different data types (float, half).

Typedef Documentation

◆ BackwardFp16Func

using Mila::Dnn::Compute::Detail::BackwardFp16Func = typedef void (*)(half*, const half*, const half*, int, cudaStream_t)

◆ BackwardFp32Func

using Mila::Dnn::Compute::Detail::BackwardFp32Func = typedef void (*)(float*, const float*, const float*, int, cudaStream_t)

◆ ForwardFp16Func

using Mila::Dnn::Compute::Detail::ForwardFp16Func = typedef void (*)(half*, const half*, int, cudaStream_t)

◆ ForwardFp32Func

using Mila::Dnn::Compute::Detail::ForwardFp32Func = typedef void (*)(float*, const float*, int, cudaStream_t)