Mila
Deep Neural Network Library
Loading...
Searching...
No Matches
Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput > Class Template Referenceexport

CUDA implementation of the Encoder operation for transformer models. More...

Inheritance diagram for Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >:
Collaboration diagram for Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >:

Public Types

using MR = typename CudaDevice::MR
 
using OperationBase = UnaryOperation< DeviceType::Cuda, int, TOutput >
 
- Public Types inherited from Mila::Dnn::Compute::UnaryOperation< TDeviceType, TInput, TOutput >
using MR = std::conditional_t< TDeviceType==DeviceType::Cuda, CudaMemoryResource, HostMemoryResource >
 Memory resource type based on device type.
 

Public Member Functions

 CudaEncoderOp (const EncoderConfig &config)
 Constructs a new CUDA Encoder operation with the default device context.
 
 CudaEncoderOp (std::shared_ptr< DeviceContext > context, const EncoderConfig &config)
 Constructs a new CUDA Encoder operation with a specific device context.
 
void backward (const Tensor< int, MR > &input, const Tensor< TOutput, MR > &output, const Tensor< TOutput, MR > &output_gradient, const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &parameters, std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &parameter_gradients, Tensor< int, MR > &input_gradient, const OperationAttributes &properties, const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &output_state) const
 Performs the backward pass of the Encoder operation.
 
void forward (const Tensor< int, MR > &input, const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &parameters, const OperationAttributes &properties, Tensor< TOutput, MR > &output, std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &output_state) const override
 Performs the forward pass of the Encoder operation on CUDA.
 
std::string getName () const override
 Gets the name of this operation.
 
- Public Member Functions inherited from Mila::Dnn::Compute::UnaryOperation< TDeviceType, TInput, TOutput >
 UnaryOperation (OperationType operation_type)
 Constructs a UnaryOperation with the specified operation type.
 
 UnaryOperation (OperationType operation_type, std::shared_ptr< DeviceContext > context)
 Constructs a UnaryOperation with the specified operation type and device context.
 
virtual ~UnaryOperation ()=default
 Virtual destructor for proper cleanup of derived classes.
 
virtual void backward (const Tensor< TInput, MR > &grad, const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &parameters, std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &output_grads) const
 Executes the backward pass of a unary operation.
 
virtual void backward (const Tensor< TInput, MR > &input, const Tensor< TOutput, MR > &output_grad, const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &parameters, std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &parameter_grads, Tensor< TInput, MR > &input_grad, const OperationAttributes &properties, const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &output_state) const
 Executes the comprehensive backward pass of a unary operation.
 
virtual void forward (const Tensor< TInput, MR > &input, const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &parameters, const OperationAttributes &properties, Tensor< TOutput, MR > &output, std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &output_state) const =0
 Executes the forward pass of a unary operation.
 
- Public Member Functions inherited from Mila::Dnn::Compute::OperationBase< TDeviceType, TInput1, TInput2, TOutput >
 OperationBase (OperationType operation_type, std::shared_ptr< DeviceContext > context)
 Constructs an OperationBase object with a specific device context and compute precision.
 
virtual ~OperationBase ()=default
 Virtual destructor for the OperationBase class.
 
std::shared_ptr< DeviceContextgetDeviceContext () const
 Gets the device context associated with this operation.
 
DeviceType getDeviceType () const
 Gets the device type for this operation.
 
OperationType getOperationType () const
 Gets the operation type enumeration value.
 

Private Attributes

EncoderConfig config_
 Configuration for the encoder operation.
 

Detailed Description

template<typename TInput, typename TOutput = TInput>
requires ValidFloatTensorTypes<TInput,TOutput>
class Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >

CUDA implementation of the Encoder operation for transformer models.

This class provides a CUDA-based implementation of the Encoder operation, which performs token embedding lookups and positional embedding additions. It transforms discrete token IDs into continuous vector representations by combining:

  1. Token embeddings from a learned vocabulary table (wte)
  2. Positional embeddings that encode sequence position information (wpe)

The implementation is optimized for NVIDIA GPUs using CUDA for high-performance computation, supporting both integer and half-precision floating-point operations.

Template Parameters
intThe data type of the input tensor elements (typically uint16_t or int for token IDs).
TDataTypeThe data type used for computation and output (typically half or float).

Member Typedef Documentation

◆ MR

template<typename TInput , typename TOutput = TInput>
using Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >::MR = typename CudaDevice::MR

◆ OperationBase

template<typename TInput , typename TOutput = TInput>
using Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >::OperationBase = UnaryOperation<DeviceType::Cuda, int, TOutput>

Constructor & Destructor Documentation

◆ CudaEncoderOp() [1/2]

template<typename TInput , typename TOutput = TInput>
Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >::CudaEncoderOp ( const EncoderConfig config)
inline

Constructs a new CUDA Encoder operation with the default device context.

Initializes the operation with a CUDA device context (defaults to CUDA:0).

◆ CudaEncoderOp() [2/2]

template<typename TInput , typename TOutput = TInput>
Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >::CudaEncoderOp ( std::shared_ptr< DeviceContext context,
const EncoderConfig config 
)
inline

Constructs a new CUDA Encoder operation with a specific device context.

Parameters
contextThe device context to use for this operation.
Exceptions
std::runtime_errorIf the context is not for a CUDA device.

Member Function Documentation

◆ backward()

template<typename TInput , typename TOutput = TInput>
void Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >::backward ( const Tensor< int, MR > &  input,
const Tensor< TOutput, MR > &  output,
const Tensor< TOutput, MR > &  output_gradient,
const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &  parameters,
std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &  parameter_gradients,
Tensor< int, MR > &  input_gradient,
const OperationAttributes properties,
const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &  output_state 
) const
inline

Performs the backward pass of the Encoder operation.

Computes gradients with respect to the embedding tables (token and position).

Parameters
inputInput tensor from the forward pass.
outputOutput tensor from the forward pass.
output_gradientGradient of the loss with respect to the output.
parametersParameters tensor from forward pass.
parameter_gradientsGradients for parameters (embedding tables).
input_gradientGradient of the loss with respect to the input (typically not used for discrete inputs).
propertiesAdditional attributes for the operation.
output_stateCache tensors from forward pass.
Here is the call graph for this function:

◆ forward()

template<typename TInput , typename TOutput = TInput>
void Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >::forward ( const Tensor< int, MR > &  input,
const std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &  parameters,
const OperationAttributes properties,
Tensor< TOutput, MR > &  output,
std::vector< std::shared_ptr< Tensor< TOutput, MR > > > &  output_state 
) const
inlineoverride

Performs the forward pass of the Encoder operation on CUDA.

Transforms input token IDs into continuous embeddings by:

  1. Looking up token embeddings from the embedding table (wte)
  2. Adding positional embeddings (wpe) based on token position

The computation is performed on the GPU using CUDA kernels for optimal performance.

Parameters
inputInput tensor of shape [B, TDataType] containing token IDs, where B is batch size and TDataType is sequence length.
parametersVector of parameter tensors [wte, wpe] where wte is of shape [V, C] (vocabulary size � embedding dimension) and wpe is of shape [maxT, C] (maximum sequence length � embedding dimension).
propertiesAdditional attributes for the operation.
outputOutput tensor of shape [B, TDataType, C] containing the resulting embeddings.
output_stateCache for intermediate results (not used in this operation).
Here is the call graph for this function:

◆ getName()

template<typename TInput , typename TOutput = TInput>
std::string Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >::getName ( ) const
inlineoverridevirtual

Gets the name of this operation.

Returns
std::string The name of the operation ("Cuda::EncoderOp").

Implements Mila::Dnn::Compute::OperationBase< TDeviceType, TInput1, TInput2, TOutput >.

Member Data Documentation

◆ config_

template<typename TInput , typename TOutput = TInput>
EncoderConfig Mila::Dnn::Compute::CudaEncoderOp< TInput, TOutput >::config_
private

Configuration for the encoder operation.


The documentation for this class was generated from the following file: